Appendix D: Potential Resources

Table of Contents

1. **SUPPLY-SIDE GENERATION** ... 1
 1.1 Technology options included in the model ... 2
 1.2 Technology options not allowed in the model .. 3

2. **DEMAND SIDE RESOURCES** ... 8
Potential Resources

This appendix provides a description of the resources that were evaluated in the development of the 2016 Integrated Resource Plan by Otter Tail. The development of the resource plan focused on the evaluation of resources that are available to the Company, taking into account a number of factors. These factors include available size increments of the technology, the maturity and commercial availability of the technology, the availability of interested co-owners of large facilities, operational parameters, and available data.

As the Strategist model evaluates each year’s resource alternatives, it is able to save a finite number of feasible combinations of solutions, called “states.” These states are carried forward as starting points to the following year’s evaluation of resource alternatives. The model ranks all states by cost and discards those states that rank higher than a prescribed saved states limit. For example, if the saved states limit is 2000, any plan that ranks 2001 or higher based on cost is discarded. It is possible that a feasible state discarded early in the study period could be the least cost solution over the study period. To minimize the potential error of discarding the true least cost plan, it is prudent to minimize the number of alternatives made available to the model. This effort helps to minimize the number of feasible combinations of alternatives and in turn minimizes the likelihood that the model will discard the least-cost plan. Narrowing the number of alternatives for evaluation also shortens the model run-time, allows the model to be more user-friendly for evaluation of various futures, and provides greater opportunity for verification and validation of model performance. The Company aimed to adequately represent every resource type in the mix of alternatives made available to the model while reducing redundancy as much as possible.

Specific cost and performance data used for the computer modeling came from a variety of sources and is provided in detail in Appendix F: Assumptions for Strategist Modeling Scenarios.

1 Supply-Side Generation

A discussion of each of the coal- and gas-fired technologies and other supply-side technologies is included in the following pages. The technologies are grouped into the following two categories

Generation Alternatives in the Model
- Combined Cycle Gas Turbine (“CCGT”)
- Simple Cycle Combustion Turbine
- Wind
- Solar Photovoltaic
Pre-screened Generation Alternatives Not in the Model

- Nuclear
- Pulverized Coal - Subcritical
- Atmospheric Circulating Fluidized Bed Coal (“ACFB”)
- Pulverized Coal – Supercritical and Ultra-supercritical (green field site)
- Supercritical Coal, using a brown field site
- Integrated Gasification Combined Cycle (“IGCC”)
- Reciprocating Engine Plants
- Phosphoric Acid Fuel Cell (“PAFC”)
- Hydro (owned projects)
- Heat Recovery
- Energy Storage
- Anaerobic Digestion
- Landfill Gas
- Microturbines
- Biomass
- Geothermal

Whether a technology was pre-screened or included in the model for capacity expansion evaluation is indicated in the text. The effort on screening resources was necessary to develop a useful modeling tool that was practical in terms of run-time while simultaneously comprehensive in evaluating the forward-looking resource mix. It is important to note that any resource used as a potential future addition in the Strategist model was intended to be generic and representative of the Company’s needs. In no way do the alternatives selected for modeling purposes exclude future consideration of competing options in similar generation categories.

1.1 Technology options included in the model

Simple Cycle Combustion Turbine - Large
The model was given the preferred combustion turbine option. This is a heavy-duty frame unit with an ISO rating of about 248 MW. The heavy-duty frame units are characterized by a lower capital cost per kW and lower maintenance cost.

Aeroderivative Simple Cycle Combustion Turbine – Small
The 49 MW ISO-rated alternative is based on the existing GELM6000 aeroderivative technology that Otter Tail currently owns and operates at Solway, MN. As the name implies, aero derivative electric generation units were derived from gas turbine development for the aircraft industry. The traits of aeroderivative units compared to the frame-style gas turbines are typically, faster starts, higher efficiency, smaller overall size, and higher capital cost in $/kw. However, frame CT technology has advanced and it should be noted that starts times and efficiency have dropped in recent years, as now some frame CT suppliers are offering units that can meet the 10 minute start time that was the hallmark of aero derivative units in the past.
Combined Cycle Gas Turbine ("CCGT")
The basic principle of the Combined Cycle Gas Turbine is to use a gaseous fuel such as natural gas, or a liquid fuel such as no. 2 fuel oil, to produce power in a gas turbine and to use the hot exhaust gases from the gas turbine to produce steam in a Heat Recovery Steam Generator ("HRSG"). The steam would be used to generate electric power with a steam driven turbine-generator set. Typical CCGT units operate with natural gas as the operating fuel, but often dual-fuel capability with oil as a backup is used to increase the availability of the generation when natural gas supplies are curtailed. The model was given the option of a 311 MW combined cycle alternative during the study period.

Wind Generation
Wind generation was made available to the model in 100 MW blocks throughout the study period modeled as a purchased power transaction.

Solar Generation
Solar generation was made available to the model in 30 MW blocks throughout the study period modeled as a purchased power transaction.

1.2 Technology options not allowed in the model

Nuclear
Electricity from a nuclear power plant remains a very clean and safe form of electrical generation in the United States and the world. In 1994, the Minnesota Legislature passed a law that created a moratorium on the construction of new nuclear generation facilities in Minnesota (216B.243, subd. 3b). Nuclear energy was not considered as a resource alternative because of the law listed above, and what appear to be very high costs related to siting, permitting, and construction. Additionally, the Company is not aware of any nuclear project under development soliciting joint ownership. Due to the factors listed above, the addition of nuclear generation was not included in the model.

Carbon Capture and Sequestration (CCS)
There is significant research being conducted on the possibility of developing technologies and regulations around the concept of capturing carbon dioxide from electric generating units using fossil fuels. While there is much information in the public domain about development work, demonstration projects, and future-looking analysis for resource planning purposes, it is the position of Otter Tail that CCS is not commercially available and will not be considered a likely technology to employ within the current planning period. If regulations or successful demonstration projects develop into full-scale projects which can be offered with commercial and performance guarantees, the Company will reconsider this position.

Pulverized Coal - Subcritical
Pulverized coal boiler technology is a mature and reliable energy producing technology around the world. The operating pressure of conventional coal-fired power plants can be classified as sub-critical and super-critical. Sub-critical and super-critical technologies refer to the state of the water that is used in the steam generation process. The critical point of water is 3208.2 psia and 705.47° F. At this critical point, there is
no difference in the density of water and steam. At pressures of about 3208.2 psia, heat addition no longer results in the typical boiling process in which there is an exact division between steam and water. The fluid becomes a composite mixture throughout the heating process. A sub-critical pulverized coal unit was eliminated from consideration as an option because of higher emissions and a less efficient heat rate.

Pulverized Coal – Supercritical and Ultra-Supercritical
The current Minnesota Next Generation Act of 2007 eliminates any reasonable chance of construction of coal-fired generation for Minnesota and was not made available to the model. Super-critical pulverized coal units have been part of the U.S. power generation mix since the mid-1950’s. Since the 1980’s, the development of high strength materials and Distributed Control Systems (DCS) have helped to make supercritical units easier to control and operate. Supercritical units typically operate at 3500 psig and up to 1050°F or 1080°F at the steam turbine inlet. In addition, while there is no current technical definition of an ultra-supercritical unit, it seems to be generally accepted that units designed to operate at 1100°F or higher are ultra-supercritical. There is currently at least one new unit that is being constructed in the United States where the design steam temperatures are above 1100°F. Heat rates for supercritical or ultra-supercritical units can be lower than 9,000 btu/kWh. If the average heat rate of the current coal fleet is 11,500 btu/kWh, use of a modern supercritical or ultra-supercritical unit would result in over 20% less coal being burned per MWh or 20% less CO2 emissions per MWh.

Atmospheric Circulating Fluidized Bed Coal (“ACFB”)
The consideration of a baseload coal-fired unit at the Big Stone Plant (“BSP”) site included evaluation of a large ACFB facility. The combustion within a fluidized bed boiler occurs in a suspended bed of solid particles in the lower section of the boiler. Combustion within the bed occurs at a slower rate and lower temperature than a conventional pulverized coal-fired boiler. Deviations in fuel type, size, or Btu content have minimal effect on the furnace performance characteristics. The bed allows for re-injection of a sorbent, such as fly ash or limestone, to reduce SO2 emissions. This type of operation requires approximately 1.5 times the quantity of limestone to achieve a reduction in SO2 similar to that of a wet limestone scrubber.

One of the benefits of an ACFB facility would have been an increased ability to use biomass fuels. The BSP unit already has an alternative fuels handling facility and the capability to burn alternate fuels. There has been difficulty in expanding the use of biomass fuels at BSP due to cost and availability. The benefit of being able to use biomass fuels was outweighed by a number of other factors, and a large fluidized bed unit was eliminated from consideration. The Minnesota Next Generation Energy Act of 2007 requires new coal-based generation to offset CO2 emissions. Any ACFB alternative would require CCS to be installed in order to serve load in Minnesota. Otter Tail Power’s view of CCS is that it is a promising technology but not currently commercial.

Integrated Gasification Combined Cycle (“IGCC”)
IGCC technology produces a low energy value syngas from coal or solid waste, for firing in a conventional combined cycle plant. The gasification process in itself is a proven technology having been previously used extensively for production of chemical products such as ammonia for use in fertilizer. The U.S. Department of Energy (DOE) has jointly funded several power plant facilities through the U.S. The majority of the DOE test facilities use entrained flow gasification design with coal as feedstock. In that process, coal is fed in conjunction with water and oxygen from an air separation unit, into the gasifier at around 450 psig where the partial oxidation of the coal occurs. The raw syngas produced by the
reaction in the gasifier exists at around 2400° F. and is then cooled to less than 400° F. in a gas cooler, which produces additional steam for both the steam turbine and the gasification process. Particulate, ammonia (NH₃), hydrogen chloride, and sulfur are then removed from the raw syngas stream. The cooled and treated syngas then feeds into a modified combustion chamber of a gas turbine specifically designed to accept the low calorific value syngas. Exhaust heat from the gas turbine then generates steam in a HRSG which in turn powers a steam turbine.

It is recognized that IGCC, in theory, shows potential to become a reliable, low emission source of electrical energy in the future that more easily adapts to the potential of CCS. Compared to supercritical pulverized coal, IGCC projects appear to have higher upfront capital costs, variable O&M, and fixed O&M. The Minnesota Next Generation Energy Act of 2007 requires new coal-based generation to offset CO₂ emissions. Any IGCC alternative would require CCS to be installed. Otter Tail Power’s view of CCS is that it is a promising technology but appears to not be economically viable today. Based on all of these considerations, Otter Tail did not include IGCC as an option in the planning model.

Reciprocating Engine Plants
Large-scale reciprocating engine power plants have begun to gain in popularity in some areas of the country in recent years. A reciprocating engine plant is constructed of incrementally sized engines (2 MW – 16 MW each). Most large-scale reciprocating engine plants are fueled with natural gas only. However, some systems may be dual fuel (natural gas and fuel oil). Typically speaking, the construction costs of a reciprocating engine plant are more expensive than a simple cycle combustion turbine (perhaps 10% – 20% higher). However, on a unit to unit comparison, the reciprocating engine is more efficient than a typical aeroderivative combustion turbine. If you consider partial load operation, the overall fuel savings can be considerable. Some energy providers have viewed the installation of reciprocating engine plants as a good fit to a region with high wind or other intermittent energy resources. A generation resource that is capable of high efficiency through a wide range of output may become attractive enough to overcome initial higher installation costs. Through the prescreening process, reciprocating engines were excluded from the alternatives made available to Strategist, largely due to the higher O&M and capital costs.

Phosphoric Acid Fuel Cell (“PAFC”)
The model evaluation excluded the option to select fuel cells due to the resource’s higher costs compared to other units of similar technology. Fuel cells function by converting hydrogen-rich fuel sources directly to electricity through an electrochemical reaction. Fuel cells can sustain high efficiency operation even under partial load conditions and they have a rapid response to load changes. The construction of fuel cells is inherently modular, making it easy to size facilities according to power requirements. One of the most significant benefits to fuel cells is the lack of emissions. The only significant emissions are water and carbon dioxide.

Hydro
For past resource plan filings Otter Tail has reviewed the potential for cost-effective small hydro development within its service territory. A Minnesota Department of Natural Resources (DNR) survey of potential sites within the state served as a basis for that review. The DNR conclusion was that the existing economic sites had already been developed. For that reason, Otter Tail did not include any potential development of small hydro within the model.
Even if potential sites existed within the Company’s service territory, it is unlikely that they would be economic for development if the sites were under FERC jurisdiction. If a waterway has a designation as a navigable stream, then it falls under FERC jurisdiction. Otter Tail’s small hydros on the Otter Tail River near Fergus Falls were all built prior to FERC licensing requirements. The Otter Tail River was designated as a navigable stream because in the 1800’s it was used for transportation and to float logs to the sawmill. In the late 1980’s and early 1990’s, Otter Tail was ordered to obtain FERC licensing on these units. The licensing process took several years and cost about $400/kW, for existing units. The licensing cost for developing a new site is likely to be so high as to make the process uneconomic.

Energy Storage
Promising new technologies are being developed, tested, and demonstrated in the field of energy storage. These technologies include battery storage, compressed air energy storage, and proven pumped hydro storage. As the overall percentage of intermittent renewable resources connected to the electrical supply system increases, the focus on energy storage technologies will increase.
Anaerobic Digestion
Previous study work within Otter Tail concluded the amount of potential generation from anaerobic digestion within Otter Tail’s system may result in minimal (less than 5 MW) opportunity and too small to be of consequence to this resource plan filing. Anaerobic digestion was not included as a generation option within the model.

Landfill Gas
According to an EPRI report completed in the late 1990’s, the Otter Tail Service territory does not include any landfills of sufficient size to support a landfill gas generating facility. The only two landfills in the area that were identified as having sufficient size are located at Fargo and Grand Forks, both served by another utility. Fargo now has a unit installed. Each of those landfills was identified as having the potential to support two 2 MW generators. Landfill gas was not included as an option within the model.

Microturbines
Microturbines are miniature combustion turbines, similar in concept to the large combustion turbines used in conventional utility power plants. Whereas large combustion turbines range from 20,000 to over 330,000 kW, microturbines fit into the 25 to 400 kW range. The waste heat from the turbine exhaust can be collected to supply a useful thermal load, which improves the overall cycle efficiency and the economics. However, the capital costs are still higher than the cost of a standard utility size combustion turbine and the efficiencies are much worse. At this point in time, potential economic applications are somewhat limited. The model did not include consideration of microturbines due to their small size, limited application at this time, and high cost.

Biomass
Since the early 1990’s Otter Tail has made an effort to use renewable fuels in its existing coal-fired plants. The Big Stone Plant has burned a number of renewable and alternate fuels over the years and has an alternative fuels handling facility to aid in blending such fuels in with coal. Some of the renewable fuels that have been tried or researched over the years include spoiled or research corn seed, wood waste in various types, soybeans, sunflower hulls, and similar agricultural wastes. Some of these materials caused significant problems in test burns by either plugging fuel handling systems (bark wood waste) or plugging boilers (soybeans). Sunflower hulls and soybeans have proven to be problematic due to their high content of potassium. As of January 1, 2010, Big Stone Plant has stopped the alternative fuel program. The primary reasons were the limited availability of fuel and the high cost of maintenance of the handling facilities.

Otter Tail did not include any other additional biomass alternatives in the model. As the cost of fossil fuels increases, other markets develop for biomass fuels such as wood waste. In many cases, the wood products companies that create the waste use it as fuel in their own process. Otter Tail has worked with customers on potential wood waste-fired biomass facility investigations. The fuel supply is limited and the costs of such facilities are high. The development potential of these facilities is limited and very site specific. To date, Otter Tail has not found other opportunities for development of such facilities with costs being close to economic.
Geothermal
Otter Tail has worked with the Geology Dept. at the University of North Dakota on investigating the potential for geothermal energy. Western North Dakota has geothermal resources in temperature ranges that would be suitable for binary cycle geothermal technologies. A binary cycle facility typically pumps natural water or brine from underground that has been heated by the earth to moderate temperature ranges of 200° F. - 500° F. The heat in the fluid is transferred to another working fluid such as iso-pentane which is used in place of water in a normal vaporization/condensation cycle. The brine is then reinjected back into the earth. The extraction and reinjection wells are typically from 1,000 – 3,000 feet deep and require significant horsepower to extract the fluid and then reinject it. The resources in western North Dakota are located much too deep to be economic for binary cycle operation, typically in the 10,000 – 12,000 foot range. Otter Tail did not include any geothermal options as potential generating resources in the model.

Otter Tail does have geothermal heat pumps as programs within its CIP process.

2 Demand Side Resources

Following is a description and comment on each of the demand response and energy efficiency resources used in this resource plan.

- **1.5 percent CIP** – The model uses annual energy efficiency and conservation alternative for Minnesota load that is 1.5 percent of average retail sales for the prior three years. By 2031, summer peak demand impacts from energy efficiency and conservation are expected to be 133.1 MW, not including the reserve margin savings. Additional sensitivities were modeled to assess the impacts of increasing the energy efficiency goals from 1.6 percent to 2.0 percent in 0.1 percent increments as ordered by the Commission.

- **Demand Response** – Demand response includes both load management capability and customer contracts that allow load shedding to a firm service level. In the preferred plan, demand response capability started at 33 MWs in 2017 and increased to 41 MW of summer season capability by 2031.