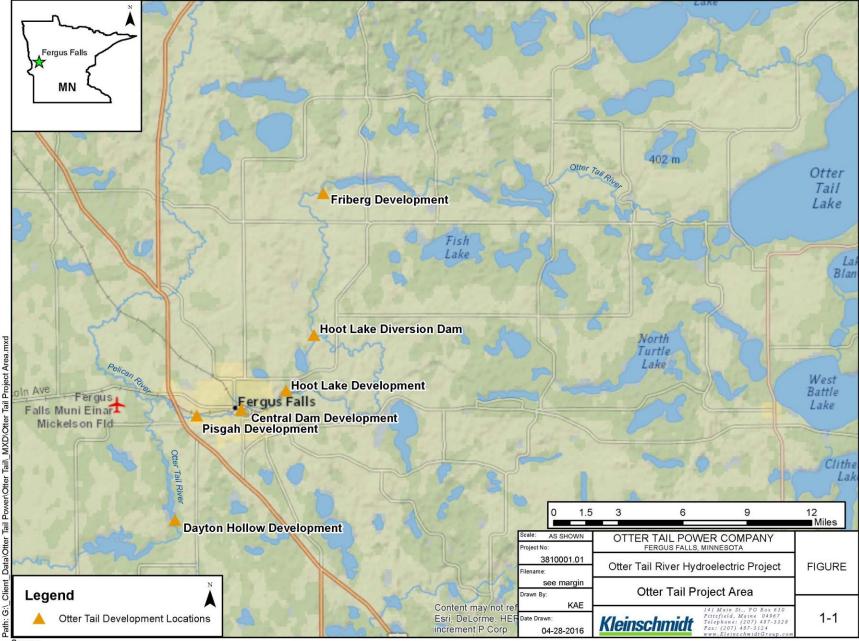


OTTER TAIL RIVER PROJECT (FERC NO. 10853) OTTER TAIL POWER COMPANY

INITIAL STUDY REPORT


2017 AQUATIC STUDIES

APRIL 26, 2018

STUDY LIST

Study Name	Status
Baseline Fisheries	Completed June-August 2017
Lake Sturgeon Sampling	Initial Survey Completed Oct 2017
Friberg Instream Flow	Completed late-August 2017
Hoot Diversion Reach Instream Flow	Completed October 2017
Fish Passage Feasibility	Completed Fall 2017

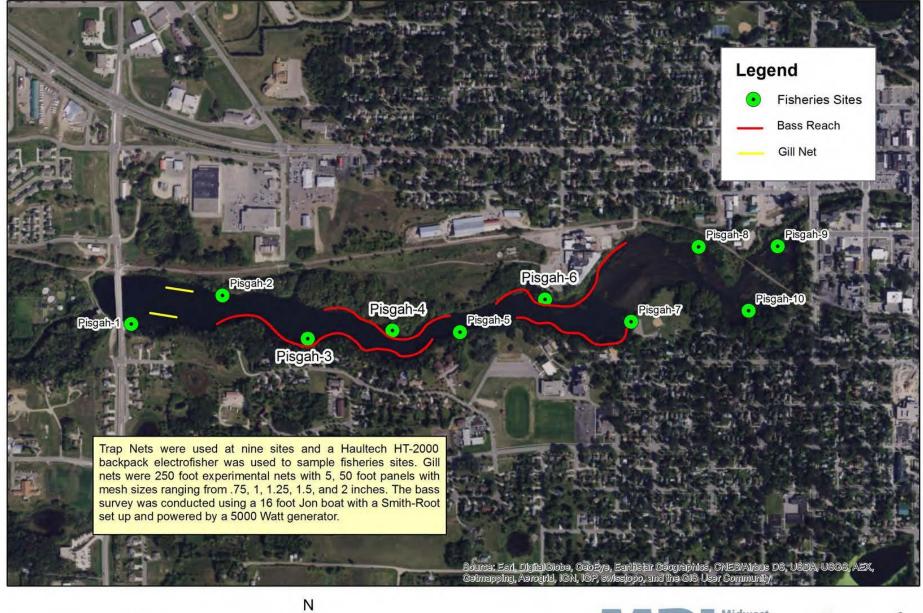
Source:

BASELINE FISHERIES

GOALS / METHODS

• Goal – provide current information about the composition, relative abundance, and size/age structure of fish species in the Otter Tail River Project area.

- Studies completed by the Midwest Biodiversity Institute
- Field methods (e.g., sampling locations, access, biosecurity) developed in consultation with MNDNR
- Standard MNDNR protocols
 - Early Summer Sampling (trap nets, EFISH, gill nets)
 - Central and Pisgah
 - August Near Shore Sampling (seining, EFISH)
 - Central, Pisgah, Friberg Lake, Hoot Lake, Wright Lake, Dayton Hollow
 - August Sampling (Boat EFISH riverine)
 - Otter Tail River between Friberg dam and Hoot Diversion dam;
 - Hoot Diversion Reach
 - 111 sampling locations (gill nets, trap nets, seining, electrofishing)
 - Minor modifications to protocols based on field conditions (i.e., shallow areas, heavy vegetation)


BASELINE FISHERIES

GOALS / METHODS

Метнор	GENERAL DESCRIPTION OF GEAR AND SAMPLING PROTOCOLS
Gill Nets	Experimental; 250-feet-long, 6-feet-deep; five 50-foot panels with varying mesh size (0.75, 1.0, 1.25, 1.5 and 2.0 inches); nets fished overnight at two sites for 1 night
Trap Nets	40-foot-long leads/wings approximately 3.5-feet deep; six 30-inch hoops; mesh size 0.75-inch nylon; nets fished overnight in each impoundment at nine sites for 1 night
Beach Seines	5-foot by 50-foot opening with a 0.25-inch nylon mesh bag seine; where vegetation allowed; one to two seine pulls parallel to shore across 100-foot e-fishing site at trap net locations
Boat Electrofisher	18-foot Jon boat outfitted with a 5000-Watt generator; 500-meter sites, sampling in direction of upstream to downstream
Backpack Electrofisher	Haultech HT-2000; 100 feet of shoreline was sampled at same location as trap net sets

Water Body	SURVEY TYPE	NUMBER OF SITES/NETS	2017 SAMPLING TIMEFRAME
Central Impoundment	Seining (too much vegetation)	1 site	August
	Shoreline backpack and boat electrofishing	10 sites	August
	Trap netting (too shallow for gill nets)	9 trap nets	June
	Boat electrofishing	3 sites	June
Pisgah Impoundment	Shoreline backpack and boat electrofishing	10 sites	August
	Gill and trap netting	2 gill nets; 9 trap nets	June
	Boat electrofishing	4 sites	June
Friberg Lake	Seining (too much vegetation)	1 site	August
	Shoreline backpack and boat electrofishing	10 sites	August
Hoot Lake	Seining	4 sites	August
	Shoreline backpack electrofishing	10 sites	August
Wright Lake	Seining	5 sites	August
	Shoreline backpack electrofishing	10 sites	August
Dayton Hollow	Seining	1 site	August
Impoundment	Shoreline backpack electrofishing	10 sites	August
Otter Tail River (between Friberg dam and Hoot Diversion dam)	Boat electrofishing	4 sites	August/October
Otter Tail River (Hoot Diversion Reach)	Boat electrofishing	4 sites	August

Pisgah Dam Impoundment Baseline Fishery Study Sites

0.15 0.3 0.6 Miles

CATCH/RESULTS

Sampling Location	No. Fish Collected	No. Species Collected	Dominant Species
Dayton Hollow Impoundment	219	19	green sunfish (26%); Johnny darter (16.9%); blackside darter (15.5%); smallmouth bass (11.9%)
Pisgah Impoundment	455	30	green sunfish (25.6%); bluegill (10.5%); common shiner (8.8%); smallmouth bass (8.6%)
Central Impoundment	475	32	hornyhead chub (14.5%); smallmouth bass (13.7%); common shiner (13.1%); green sunfish (10.9%); rock bass (10.5%)
Hoot Lake	176	14	bluegill (39.2%); green sunfish (15.3%); largemouth bass (11.4%)
Wright Lake	128	12	rock bass (21.9%); bluegill (16.4%); Johnny darter (16.4%); green sunfish (14.8%)
Friberg Impoundment	97	17	bluegill (24.7%); largemouth bass (24.7%); weed shiner (20.6%)
Friberg (Riverine)	369	27	smallmouth bass (37.9%); golden redhorse (10.8%)
Hoot Diversion Reach (Riverine)	688	23	common shiner (25.6%); hornyhead chub (21.7%); northern hogsucker (15.1%); smallmouth bass (15.1%)
Total Catch	2,607	47	smallmouth bass (12.7%); common shiner (11.9%); green sunfish (9.2%); and hornyhead chub (8.4%)

CATCH/ RESULTS

Fish Species Composition – 5% or more of total										
Species	Scientific Name	Total collected	% of Total							
Smallmouth bass	Micropterus dolomieu	330	12.66%							
Common shiner	Luxilus cornutus	310	11.89%							
Green sunfish	Lepomis cyanellus	298	11.43%							
Hornyhead chub	Nocomis biguttatus	219	8.40%							
Bluegill	Lepomis macrochirus	184	7.06%							
Largemouth bass	Micropterus salmoides	130	4.99%							

Fish Species Composition	on – 1% to 5% or more of total			
Species	Scientific Name	Total collected	% of Total	
Golden redhorse	Moxostoma erythrurum	121	4.64%	
Northern hogsucker	Hypentelium nigricans	113	4.33%	
Bluntnose minnow	Pimephales notatus	102	3.91%	
Rock bass	Ambloplites rupestris	93	3.57%	
Johnny darter	Etheostoma nigrum	91	3.49%	
Notropis spp.	-	68	2.61%	
Weed shiner	Notropis texanus	55	2.11%	
Blackside darter	Percina maculata	51	1.96%	
Nocomis spp.	-	50	1.92%	
White sucker	Catostomus commersonii	47	1.80%	
Northern pike	Esox lucius	43	1.65%	
lowa darter	Etheostoma exile	33	1.27%	

CATCH/RESULTS – IMPOUNDMENT

Species	YOY	Juvenile	Adult	Total	
Black crappie	0	7	10	17	
Bluegill	103	44	31	178	
Bowfin	0	0	10	10	
Channel catfish	0	0	1	1	
Largemouth bass	63	4	1	68	
Northern pike	0	1	17	18	
Pumpkinseed	2	5	12	19	
Rock bass	30	37	67	134	
Smallmouth bass	67	16	68	151	
Walleye	0	0	1	1	
Yellow perch	0	6	4	10	
Total	265	120	222	607	
Relative Percent	43.7%	19.8%	36.6%	100.0%	

Species	Weight (pounds)	Length (inches)	Sample Method	Impoundment	
Common carp	10.26	26.6	Gill Net	Pisgah	
Bowfin	5.03	24.0	Trap Net	Pisgah	
Smallmouth bass	3.64	18.8	Boat	Central	
Northern pike	2.91	22.7	Trap Net	Central	
Walleye	1.74	15.6	Gill Net	Pisgah	
Black crappie	1.37	12.7	Trap Net	Central	
Bluegill	0.88	9.4	Boat	Pisgah	
Rock bass	0.82	9.9	Trap Net	Pisgah	
Pumpkinseed	0.49	7.7	Trap Net	Pisgah	
Channel catfish	0.15	7.4	Trap Net	Central	
Yellow perch	0.11	6.0	Trap Net	Pisgah	
Largemouth bass	0.04	4.5	Boat	Pisgah	

BASELINE FISHERIES

SUMMARY

- Fisheries survey completed in accordance with study plan
 - minor adjustments due to vegetation and water depth (too shallow)

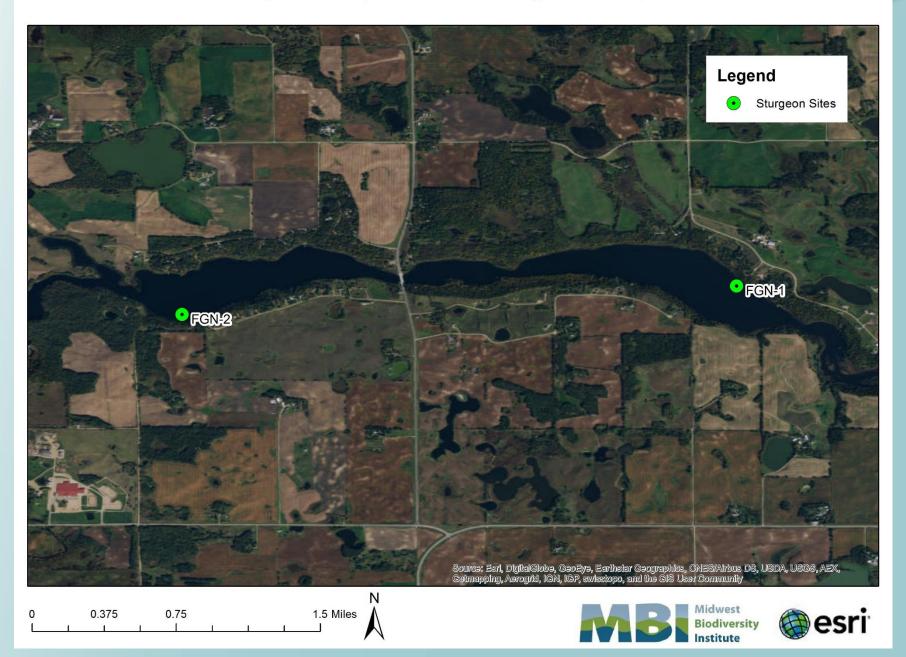
- Otter Tail Project Area provides:
 - Diverse assemblage of game, non-game, and native fish species and habitats
 - Multiple life stages (nursery, rearing, spawning)
 - Littoral shorelines, pelagic habitats, riverine habitats

BASELINE FISHERIES

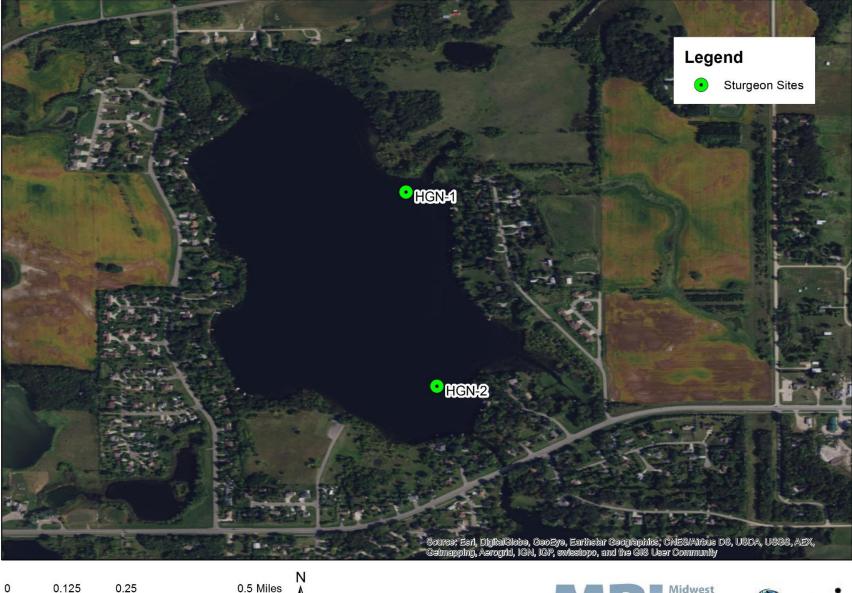
FALL LAKE STURGEON

GOALS / METHODS

 Goal – obtain information about the distribution, size, and age structure of lake sturgeon in 4 waterbodies:


- Orwell Lake
- Dayton Hollow Reservoir
- Hoot Lake
- Friberg Lake
- Field methods (logistics, sample locations) developed in consultation with MNDNR/USFWS prior to survey work
- Sampling from October 17 October 23 with assistance from USFWS/MNDNR

FALL LAKE STURGEON

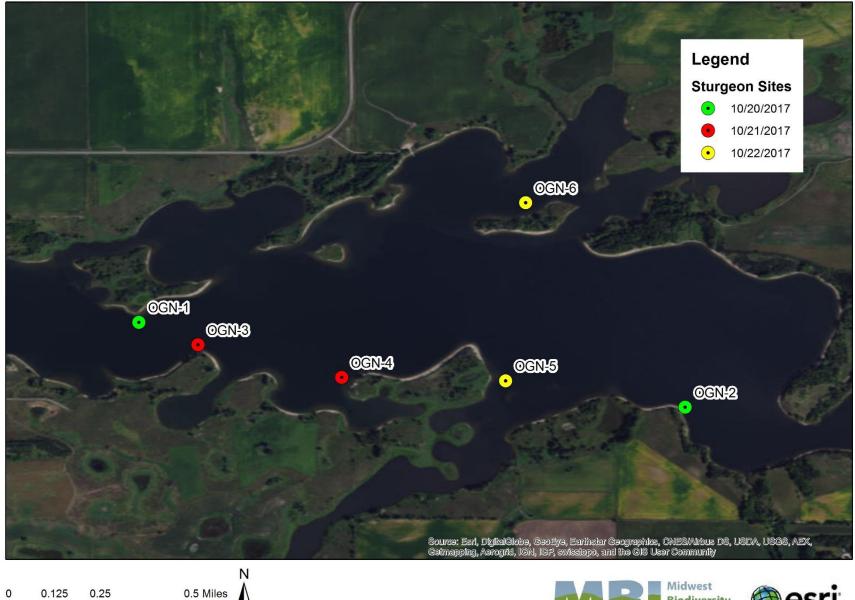

- METHODS
 - Two 200-foot-long experimental nets set in each waterbody for 3 consecutive nights
 - Net soak times of 15 to 17 hours; checked each morning

- Biological data: length, weight, girth, presence of tags
- PIT-tagged with syringe applicator
- Sampling depth: 10 to 40 feet

Friberg Dam Impoundment Sturgeon Study Sites

Hoot Lake Sturgeon Study Sites

Dayton Hollow Sturgeon Study Sites



0.25 0.5 Miles

Orwell Lake Sturgeon Study Sites

0.25 0.125

FALL STURGEON

RESULTS

Location No. Collected Percent Total Catch **Friberg Reservoir** 23.5% 9 Hoot Lake 17* 50.0% Dayton Hollow Reservoir 8* 26.5% **Orwell Lake** 0.0% 0 Total 100.0% 34

Kleinschmidt

* plus 2 recaptured fish at each site

Length Class	Number Collected	Percent Collected
< 24 inches	0	0.0%
25 to 36 inches	2	6.1%
37 to 48 inches	22	66.7%
> 48 inches	9	27.3%
Total	33	100.0%

FALL STURGEON

SUMMARY

 Fall sampling survey completed in accordance with study plan; no fin samples

- Spring sampling scheduled for the week of May 7; planning to collect pectoral fin samples
- 3 of 4 impoundments provide habitat for rearing lake sturgeon

Fall Sturgeon

FRIBERG INSTREAM FLOW STUDY

 Study Goal – assess the relationship between aquatic habitat, boating activities, and river flow in the reach at existing conditions up to 250 cfs.

Kleinschmidt

Friberg Development

- 1 turbine with capacity of ~245 cfs
- Study area ~ 2,200-ft of Otter Tail river between dam/powerhouse
- OTPC opens a gate ~ 3 inches during non-spill conditions (~16 cfs) to maintain aquatic habitats
- natural hydrology sustains river flow considerably higher than capacity of the turbine, which results in additional water to the reach

FIELD METHODS (LATE AUGUST 2017)

- Identification / establish 7 transects with MNDNR (prior to study)
- Engineering weir/orifice calculations to determine gate settings at dam for 5 releases
- Gauge river flow at each release and installed temp. staff gauges to verify stable flows
- Measure depth and velocity (microhabitat data) from the dam at all transects at all releases
- Classify substrates across each transect; measured wetted channel width
- Photographed each transect at each flow release
- Canoed reach at each flow release; qualitative assessment of boat navigability

Source: ESRI, Kleinschmidt, Otter Tail

RIVER FLOWS

Flow Releases From the Friberg Dam During the 2017 Instream Flow Study

Release No.	Target Release	Gate Opening (weir calcs)	Measured Discharge at Transect 2 (cfs)
1	existing	3 inches	16
2	60	10.5 inches	54
3	110	22.25 inches	113
4	175	37.25 inches	185
5	250	50 inches	242

ANALYSIS METHODS

• Selected representative species/lifestages (12) with MNDNR using habitat guilds, based on fisheries catch, and study plan

Species and Lifestages Evaluated for the Friberg Instream Flow Study

		Raceway/	Medium
Species/Lifestage	Riffle	Run	Pool
Smallmouth bass (spawning)	-	-	Х
Golden redhorse (juvenile)	-	-	Х
Channel catfish (juvenile)	-	-	Х
Longnose dace (spawning)	Х	-	-
Smallmouth bass (juvenile)	Х	-	-
Longnose dace (adult)	Х	-	-
Golden redhorse (young-of-year)	Х	-	-
Lake sturgeon (spawning)	-	Х	-
Northern hogsucker (adult)	-	Х	
Channel catfish (young-of-year)	-	Х	-
Creeper (mussel)	-	Х	-
Threeridge (mussel)	-	Х	-

ANALYSIS METHODS

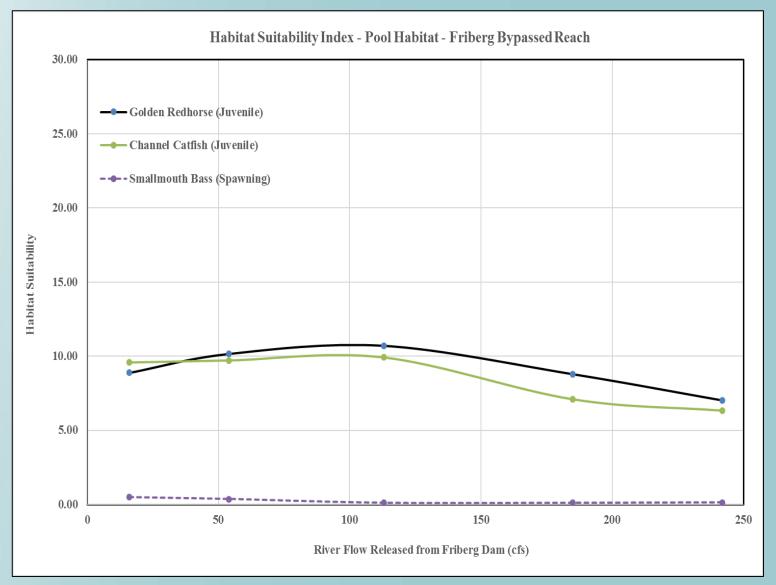


- Field data entered into MS Excel; QC data entry
- Excel-based suitability assessment tool to compare flows/habitat and calculate a habitat suitability index
- Habitat Suitability Curves (MNDNR 2006); species-specific Poisson or Arctangent formulas that show micro-habitat (depth, velocity, substrate) preference

SI =(((453694000-DEPTH)/(453694000-9.036))^8594488.372) *2.718^((8594488.372/236434000)*(1-(453694000-DEPTH)/(453694000-9.036))^236434000)) (Adult Longnose Dace – Depth)

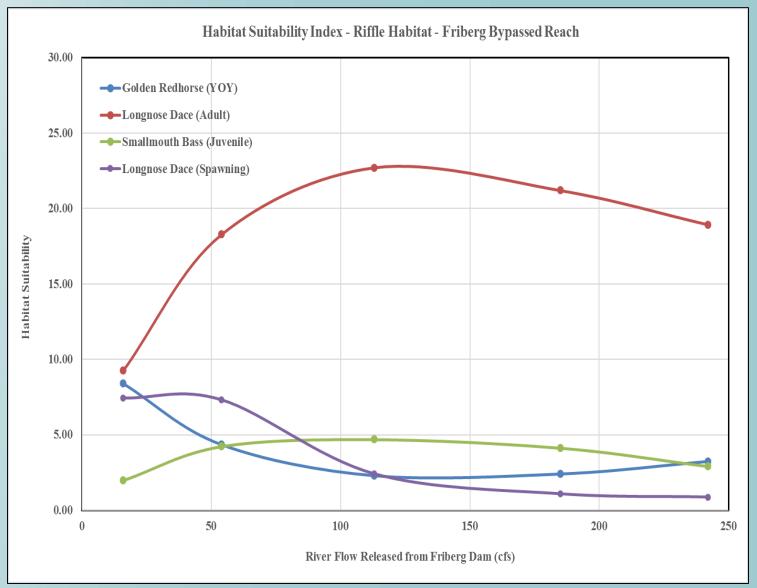
- Product of 3 suitability values (depth, velocity, and substrate) at each station on transect
- Summed across each transect at each flow release to calculate a unitless suitability index
- Graphed against discharge; incremental gain or loss; percent of the highest value observed

ANALYSIS METHODS – HABITAT SUITABILITY CRITERIA

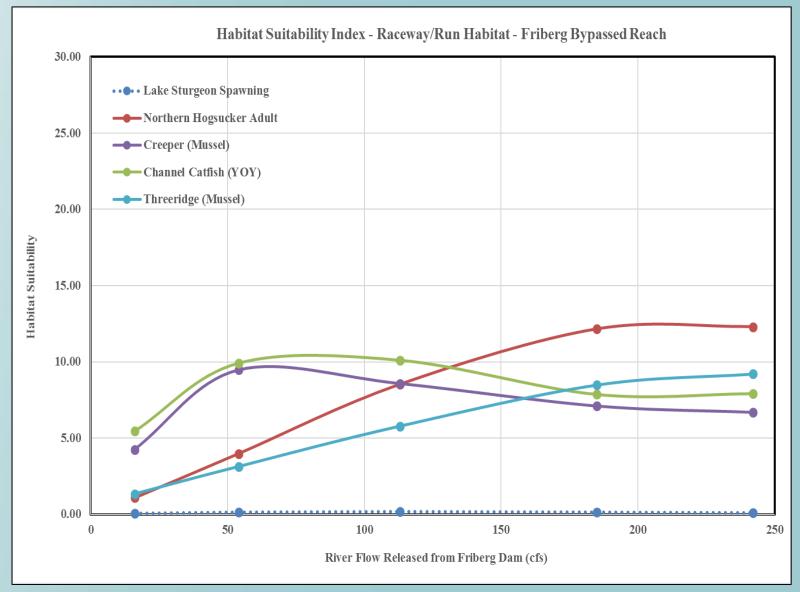


ANALYSIS METHODS

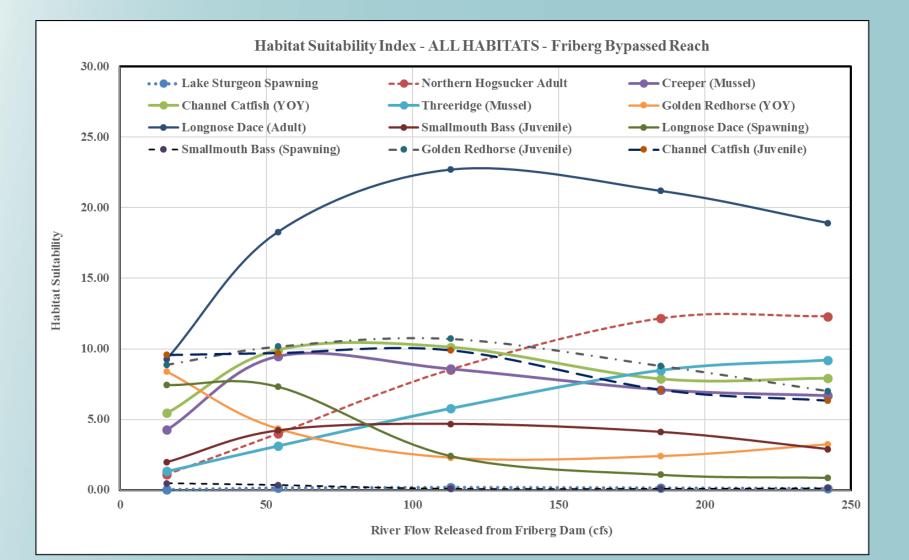
Transect	2 (Raceway / F	Run Habit	at)														
	Habitat Data					Northern Hogsucker (Adult) Creeper (Mussel)						Threeridge (Mussel)					
								Relea	ise 2 (54 cf	s)							
		Depth	Depth	Velocity	Velocity			Substrate	Composite			Substrate	Composite			Substrate	Composite
Station		(ft)	(cm)	(fps)	(cmps)	Depth SI	Velocity SI	SI	SI	Depth SI	Velocity SI	SI	SI	Depth SI	Velocity SI	SI	SI (*)
3.5																	
5																	
7																	
9	Small gravel	1.9	57.9	-0.04	-1.2	0.88	0.04	0.92	0.03	0.83	0.02	1.00	0.02	0.29	0.16	1.00	0.05
11	Small gravel	1.1	33.5	0.49	14.9	0.31	0.18	0.92	0.05	0.00	0.88	1.00	0.00	0.00	0.28	1.00	0.00
13	Small gravel	1.55	47.2	0.76	23.2	0.69	0.33	0.92	0.21	0.35	1.00	1.00	0.35	0.00	0.37	1.00	0.00
15	Small gravel	1.85	56.4	0.73	22.3	0.86	0.31	0.92	0.24	0.78	1.00	1.00	0.78	0.21	0.36	1.00	0.08
17	Large gravel	2.25	68.6	0.74	22.6	0.97	0.31	0.92	0.28	1.00	1.00	1.00	1.00	0.84	0.36	1.00	0.30
19	Large gravel	2.55	77.7	0.75	22.9	1.00	0.32	0.92	0.29	0.96	1.00	1.00	0.96	0.99	0.37	1.00	0.36
21	Large gravel	2.8	85.3	0.77	23.5	1.00	0.33	0.92	0.30	0.88	1.00	1.00	0.88	0.99	0.37	1.00	0.37
23	Large gravel	2.9	88.4	0.90	27.3	0.99	0.42	0.92	0.38	0.85	0.97	1.00	0.83	0.98	0.42	1.00	0.41
25	Large gravel	3.1	94.5	0.92	27.9	0.98	0.43	0.92	0.39	0.78	0.97	1.00	0.75	0.95	0.43	1.00	0.41
27	Large gravel	3.2	97.5	0.94	28.7	0.97	0.45	0.92	0.40	0.74	0.96	1.00	0.71	0.93	0.44	1.00	0.41
29.1	Small boulder	3	91.4	0.79	24.1	0.99	0.35	0.69	0.23	0.81	1.00	0.77	0.62	0.97	0.38	0.28	0.10
31	Cobble	2.8	85.3	0.83	25.3	1.00	0.37	1.00	0.37	0.88	0.99	0.22	0.19	0.99	0.40	0.50	0.20
33	Cobble	2.6	79.2	0.71	21.6	1.00	0.30	1.00	0.30	0.95	1.00	0.22	0.21	1.00	0.35	0.50	0.18
35	Small boulder	1.85	56.4	0.62	18.9	0.86	0.24	0.69	0.15	0.78	0.98	0.77	0.59	0.21	0.32	0.28	0.02
37	Large gravel	2.1	64.0	0.62	18.9	0.95	0.24	0.92	0.21	0.97	0.98	1.00	0.94	0.65	0.32	1.00	0.21
39	Small gravel	1.8	54.9	0.48	14.6	0.84	0.18	0.92	0.14	0.72	0.87	1.00	0.63	0.14	0.28	1.00	0.04
41	Small gravel	1	30.5	0.17	5.2	0.22	0.07	0.92	0.02	0.00	0.29	1.00	0.00	0.00	0.20	1.00	0.00
43	Small gravel	0.35	10.7	-0.04	-1.2	0.00	0.04	0.92	0.00	0.00	0.02	1.00	0.00	0.00	0.16	1.00	0.00
45.5																	
							Total SI		3.99		Total SI		9.47			Total SI	3.13
								Relea	se 3 (113 c	is)					_		


RESULTS

Habitat Suitability Index Value Pool Species


RESULTS

Habitat Suitability Index Value Riffle Species



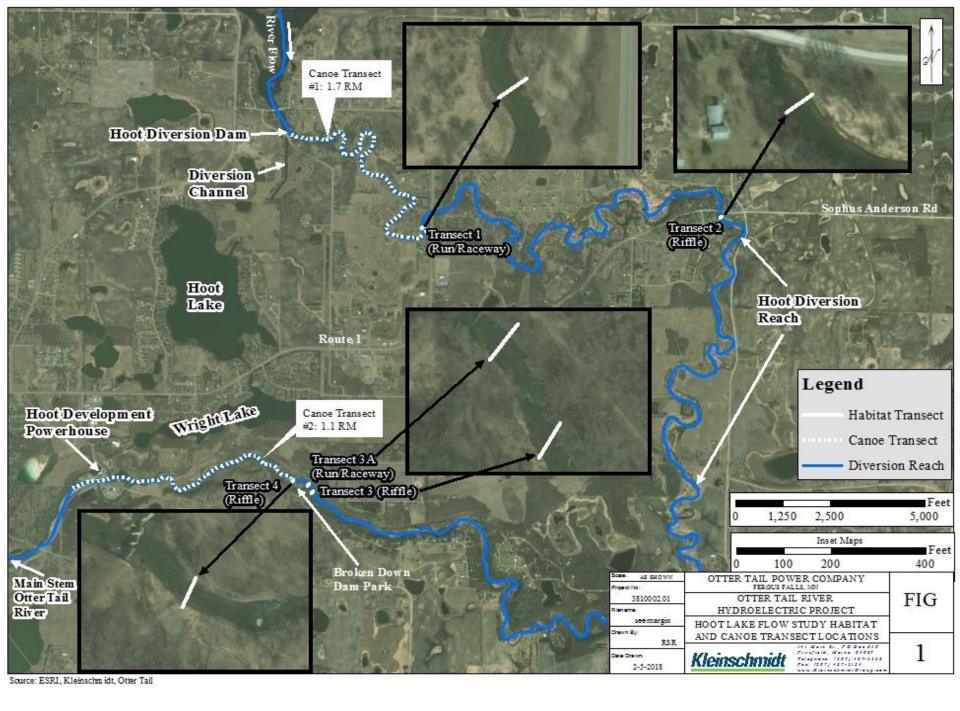
RESULTS

Habitat Suitability Index Value Raceway Species

Habitat Suitability Index Value for ALL Species

Release	Approx. Flow	Boater Rating	Portage Required	Whitewater Features	Impediments to Boating	Overall Comment	Overall Ranking
1	16 cfs	Beginner	Yes, shallow reaches with several obstructions	None	Log jams, obstacles, and metal break wall	Not navigable by canoe at this release, carried the boat more than floated; may be ok with kayak	1
2	54 cfs	Beginner- Intermediate	Only 1 shallow area to portage	Not quite whitewater but very fast runs; must maneuver to stay in deeper water	Able to float over log jams	Fast water throughout, still some shallow areas with boulders	3
3	113 cfs	Intermediate	None required	Yes, several fast runs with some whitewater over boulders	None - able to float whole reach	Fast water throughout reach, some boulders to maneuver around; fast water results in increased tipping hazards to less experienced boaters	4
4	185 cfs	Intermediate	None required	Fast water over boulders forms small white caps.	None - able to float whole reach	Very fast runs, easily floated middle of the reach; fast water results in increased tipping hazards to less experienced boaters	4
5	242 cfs	Did not paddle - too much water advanced or expert only					

SUMMARY



- Existing operational protocol (16 cfs) provides suitable habitat for several species and lifestages of freshwater fish and mussels
- Biggest gains (inflection) in habitat suitability for creeper (mussel), YOY channel catfish, juvenile smallmouth bass, juvenile golden redhorse occur with release of 54 cfs
- Inflection at 113 cfs for adult longnose dace and spawning lake sturgeon
- Inflection at 185 cfs for threeridge mussels and northern hogsucker adults
- Flow releases of 54, 113, 185 provide quality boating; intermediate to advanced

HOOT DIVERSION FLOW STUDY

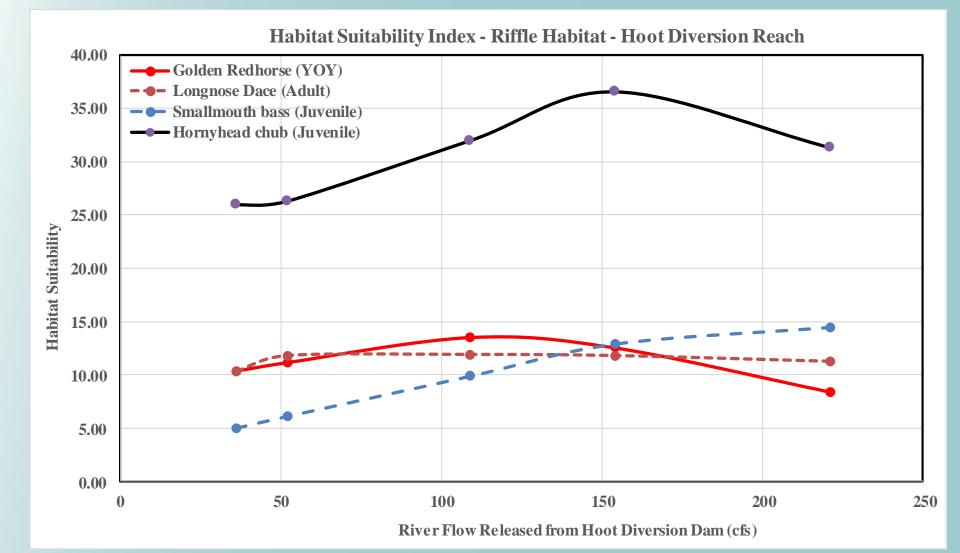
- Goal assess existing minimum flow requirements; quantify relationship between aquatic habitat, boating, and river flow
- Hoot Development
 - 1 turbine with capacity of ~300 cfs
 - Study area 12.8 mile reach of Otter Tail river between diversion dam/powerhouse
 - current flow requirements:
 - 30 cfs (or inflow, whichever is less) from the day after Labor Day through March 31
 - 110 cfs (or inflow, whichever is less) from April 1 to May 31
 - 60 cfs (or inflow, whichever is less) from June 1 through Labor Day
- Methods very similar/identical to Friberg

RIVER FLOWS

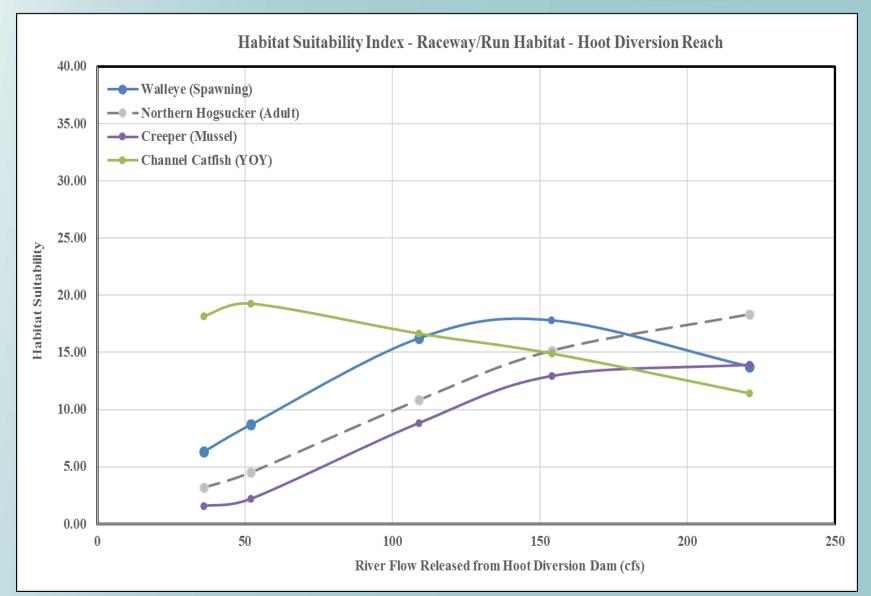
Flow Releases From the Hoot Diversion Dam During the 2017 Instream Flow Study

Release No.	Target Release	Gate Opening	Measured Discharge at Transect 1 (cfs)
1	30	1 gate open 2.75 inches plus leaks through fishway and gates	36
2	60	0 gates open, fishway flow at full pond plus leaks from dam gates	52
3	110	1 gate open 7.25 inches plus fishway flow and leaks from dam gates	109
4	175	1 gate open 16.25 inches plus fishway flow and leaks from dam gates	154
5	250	1 gate open 12 inches; 1 gate open 14.5 inches plus fishway flow and leaks from dam gates	221

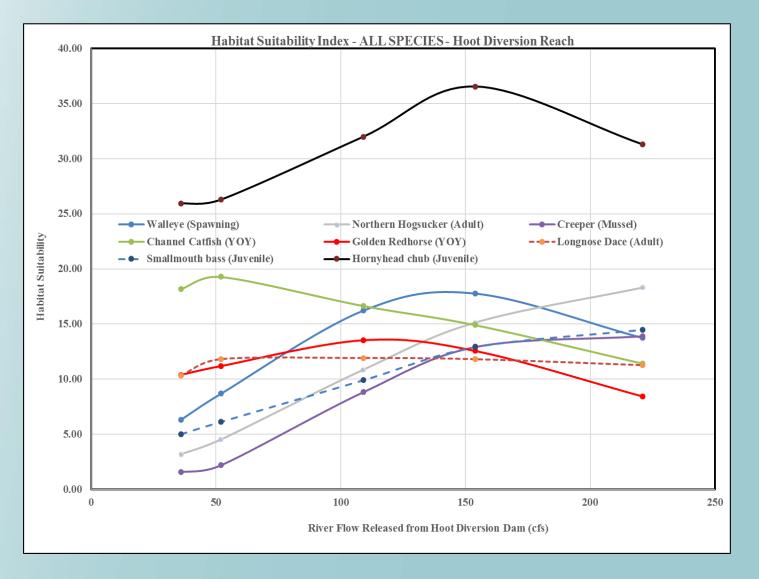
ANALYSIS METHODS (SAME AS FRIBERG)



• Selected representative species/lifestages (8) with MNDNR using habitat guilds, baseline fisheries data, and study plan


Species and Lifestages Evaluated for the Hoot Diversion Instream Flow Study

Species/Lifestage	Riffle	Raceway/Run	
Hornyhead chub (juvenile)	Х	-	
Smallmouth bass (juvenile)	Х	-	
Longnose dace (adult)	Х	-	
Golden redhorse (young of year)	Х	-	
Walleye (spawning)	-	Х	
Northern hogsucker (adult)	-	Х	
Channel catfish (young-of-year)	-	Х	
Creeper (mussel)	-	Х	


Habitat Suitability Index Value Riffle Species

Habitat Suitability Index Value Raceway Species

Habitat Suitability Index Value for ALL Species

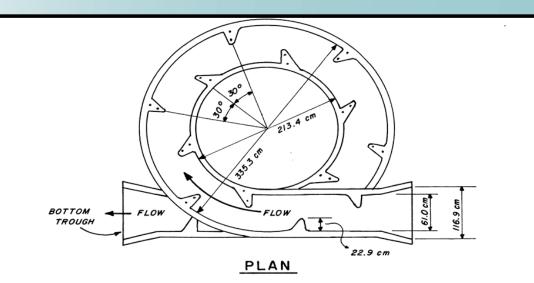
BOATER NAVIGABILITY

Releas e	Approx. Flow	Boater Rating	Portage Required?	Whitewater features*	Impediments to boating	Overall comment	Overall ranking* *
1 _	36 cfs	Beginner	Yes, shallow in areas, 4 portages, upper reach more challenging than lower reach	None	Shallow water at artificial rapids; shallow areas below the diversion dam	Carried the boat more than floated; may be ok with kayak. Lower reach generally navigable with 1 portage; many scrapes and arduous paddling	2.5
2	52 cfs	Beginner	Yes, shallow in areas, 2 portages, upper reach more challenging than lower reach	None	Shallow water at artificial rapids; shallow areas below the diversion dam	Easy to navigate, not excessively fast in upper reach; adequate flow except near artificial rapids in lower reach (portage required)	4.5
3	109 cfs	Intermedia te	Yes, 1 at artificial rapids	None	Shallow water at artificial rapids; shallow areas below the diversion dam	Easy to navigate, not excessively fast in upper reach; adequate flow except near artificial rapids in lower reach (portage required)	4.5
4	154 cfs	Intermedia te	Yes, 1 at artificial rapids	None	Shallow water at artificial rapids	Some fast areas in upper reach, easy to navigate, not excessively fast in upper reach; adequate flow except near artificial rapids (portage required); lower reach has some fast water that requires skill	5
5	221 cfs	Intermedia te	None	None	Shallow water at artificial rapids	Some fast areas in upper reach, easy to navigate, not excessively fast in upper reach; adequate flow except near artificial rapids (portage required); lower reach has some fast water that requires skill	5

SUMMARY

- Existing minimum flows (30, 60, 110) provide suitable habitat for several species and lifestages of freshwater fish and mussels
- Existing flow regime keeps a large percentage of the channel wetted, though in areas, it is shallow, especially during a release of approximately 30 cfs
- Suitable habitat remained consistent or decreased for young-of-year golden redhorse, young-of-year channel catfish, adult longnose dace at higher flow releases (154 and 221 cfs)
- Habitat suitability decreased or there was an inflection (*i.e.*, notable decrease in rate of increase of habitat suitability) at 154 and 221 cfs for all of organisms
- Releases of 52, 109, 154, and 221 provide quality boating; beginner to intermediate
- Study plan implemented; met objectives; provided quantitative assessment to determine instream flow

FISH PASSAGE FEASIBILITY



 Study Goal – evaluate whether there are cost-effective and practical means to provide fish passage at the Friberg, Hoot, Central, Pisgah, and Dayton Hollow dams

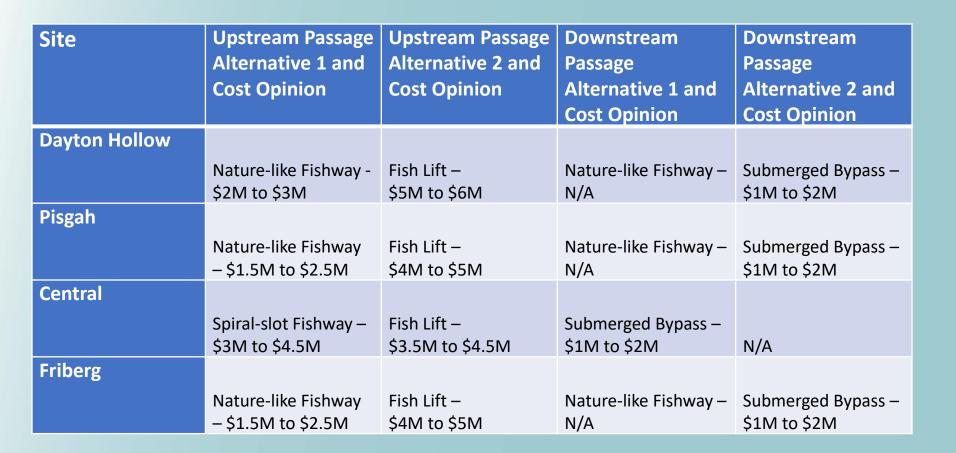
Methods

- Consultation with agencies (tele-conference Nov. 2017) to identify systems for review
- Review of biological effectiveness with focus on lake sturgeon and initial screening of alternatives
- Develop conceptual designs of up to two alternatives for upstream and downstream passage
- Opinion of probable construction cost estimates (order of magnitude; more review recommended)
- General advantages/disadvantages and operational issues
- Identification of alternative mitigation techniques

RESULTS – BIOLOGICAL

- Fish passage for sturgeon experimental and challenging due to poor swimming ability and morphology (large body size and high drag)
- Limited literature
- Richelieu River (2010)
 - vertical slot; low-head dam (8.5-feet)
 - eighty-eight lake sturgeon (88.2 percent) entered volitionally
 - 32 (36.4 percent) passed
- USGS Conte Fish Lab (2011)
 - spiral-slot prototype; two 360-degree loops around a 20-foot diameter circle
 - 125-feet-long, 3.3-feet-wide; total rise 6.3 feet
 - 10 adults (90.9 percent) and 16 juvenile (72.2 percent) captive reared lake sturgeon ascended the fishway in a lab setting 49

RESULTS – BIOLOGICAL


- Parsley et al. (2007)
 - Pool and weir style on the Columbia River
 - Limited passage of white sturgeon (8 percent; 8 of 90 fish)
- Fish Lifts (designed for sturgeon)
 - Full depth entrance
 - Applicable for higher heads or where space is limited.
 - Less energy expenditure, which may result in less fall back and better effectiveness
 - Some success on Menominee River and Holyoke
- Nature-like Fishways
 - Limited information regarding success but gaining popularity
 - Shovelnose sturgeon twice as likely to pass via nature-like then slotted fishways (White and Mefford 2002)
 - Require low-gradient channel (3%) so land/space can be an issue
 - Provides upstream and downstream passage

RESULTS – INITIAL SCREENING

- Eliminated Whooshh species-specific and experimental; need tubes for multiple species/lifestages
- Eliminated Trap and Truck due to handling / labor requirements
- Eliminated vertical slot fishways, Denil fishways, and Alaskan steeppasses; limited effectiveness at passing lake sturgeon; area constraints
- Included fish lifts given height of dams, space constraints, and possible improved performance as compared to other measures
- Included nature-like fishways (upstream and downstream), where practical
- Included downstream bypass orifices

RESULTS

SUMMARY

- Passage for sturgeon experimental and challenging
- Construction / design costs throughout Otter Tail River Project area range as much as \$30 million
- Substantial additional costs likely for land acquisition; structural modifications; administrative; lost generation
- Alternatives may include: conservation easements, watershed restoration plans, TMDLs, off site mitigation or stream restoration

QUESTIONS/COMMENTS